

9th DOE Meeting January 29 2002

Goals, Design & Implementation of a Versatile Microarray Database

Marc Rejali

(jointly with M. Antoniotti, V. Cherepinsky, C. Leventhal, S. Paxia, A. Rudra, J. West & B. Mishra)

Department of Computer Science & Mathematics (Courant, NYU)

Cold Spring Harbor Laboratory

1/29/2002

Various Projects at NYU Based on Microarrays

- Nitrogen Pathway analysis in Arabidopsis
 - (in cooperation with NYU Biology Dept., USC & Univ. of Illinois)
- · Hallucinogen effects on brain functions
 - (in collaboration with Mount Sinai School of Medicine)
- Cancer related cell signaling using different cell lines
- Genome Mapping and Probe Placement:
 - Poster #112

1/29/2002 2

Goals

- Facilitate collaborative research
 - Data sharing
 - Rich graphical and web interface
- Controlled data visibility/access
 - Group-based read/write access
- General access to published data
 - Simple data retrieval
- Provision of analysis and clustering algorithms
 - Standard methods
 - New methods / enhancements

1/29/2002 5

NYU Microarray Database (NYUMAD).

- The underlying DB schema design
 - follows the specifications put forth by the Microarray Gene Expression Database group (http://www.ebi.ac.uk/microarray/MGED),
 - especially when it comes to the XML-based MAML (Microarray Mark-up Language) exchange format.

1/29/2002 6

NYUMAD Functionality

- Stores array data, experimental conditions and protocols
- · Data is served to "clients" via the world wide web (WWW).
 - Clients can be the NYUMAD Java applet/application
 - custom-built user programs,
 - XML files retrieved using a simple HTTP text based request format.
- The NYUMAD applet presents data in a logical manner and allows easy navigation through the data.
 - Allows straight-forward updating of existing data and the insertion of new data.
 - Retrieval of data in text or XML format

1/29/2002 7

Architecture

- The NYUMAD has a three-tier architecture:
- Front tier
 - NYUMAD java applet/application
 - User's custom-built programs
 - HTML forms.
- Middle tier
 - Java servlets handle requests and submissions from the front tier
 - Invisible to the end user.
 - Algorithms and analytics (C++, C, other languages)
- Back tier
 - Relational database management systems (RDBMS, currently PostgreSQL running on a 6 nodes Linux cluster).
 - File management system used to store large files such as image files.

1/29/2002

Conclusion

- Functionality ranges from the storage of the data to front-end capabilities for the presentation and maintenance of the data.
- The database is a unified platform to understand the microarray based gene expression data.
 - The data can be output to a wide class of clustering algorithms, based on various "similarity measures" and various approaches to grouping
 - We have developed a new statistically-robust similarity measure based on James-Stein Shrinkage estimators and provided a Bayesian explanation for its superior performance
 - Additional research is focused on incorporating statistical tests for validation and measuring the significance (e.g., jackknife and bootstrap tests).

1/29/2002 14

Further Information

NYU Bioinformatics

http://bioinformatics.cat.nyu.edu

Applet prototype

1/29/2002

Requires Java Runtime Environment 1.3 Has guest login – no password required Email: mcr221@nyu.edu

15